多项式方程的参数化系统在科学和工程中的许多应用中都出现了真实的解决方案,例如,描述了动态系统的平衡,链接满足设计约束,以及计算机视觉中的场景重建。由于不同的参数值可以具有不同数量的实际解决方案,因此参数空间被分解为边界形成真实判别基因座的区域。本文认为将真实的判别基因座定位为机器学习中的监督分类问题,该目标是确定参数空间上的分类边界,其中类是实际解决方案的数量。对于多维参数空间,本文提出了一种新型的采样方法,该方法仔细采样了参数空间。在每个示例点,同质延续用于获取相应多项式系统的真实溶液数量。包括最近的邻居和深度学习在内的机器学习技术可有效地近似实际的判别基因座。学习了真实判别基因座的一种应用是开发一种真实的同义方法,该方法仅跟踪真正的解决方案路径,与传统方法不同,该方法跟踪所有〜复杂〜解决方案路径。示例表明,所提出的方法可以有效地近似复杂的解决方案边界,例如由库拉莫托模型的平衡引起的。
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
We present a lightweight post-processing method to refine the semantic segmentation results of point cloud sequences. Most existing methods usually segment frame by frame and encounter the inherent ambiguity of the problem: based on a measurement in a single frame, labels are sometimes difficult to predict even for humans. To remedy this problem, we propose to explicitly train a network to refine these results predicted by an existing segmentation method. The network, which we call the P2Net, learns the consistency constraints between coincident points from consecutive frames after registration. We evaluate the proposed post-processing method both qualitatively and quantitatively on the SemanticKITTI dataset that consists of real outdoor scenes. The effectiveness of the proposed method is validated by comparing the results predicted by two representative networks with and without the refinement by the post-processing network. Specifically, qualitative visualization validates the key idea that labels of the points that are difficult to predict can be corrected with P2Net. Quantitatively, overall mIoU is improved from 10.5% to 11.7% for PointNet [1] and from 10.8% to 15.9% for PointNet++ [2].
translated by 谷歌翻译
Multi-agent artificial intelligence research promises a path to develop intelligent technologies that are more human-like and more human-compatible than those produced by "solipsistic" approaches, which do not consider interactions between agents. Melting Pot is a research tool developed to facilitate work on multi-agent artificial intelligence, and provides an evaluation protocol that measures generalization to novel social partners in a set of canonical test scenarios. Each scenario pairs a physical environment (a "substrate") with a reference set of co-players (a "background population"), to create a social situation with substantial interdependence between the individuals involved. For instance, some scenarios were inspired by institutional-economics-based accounts of natural resource management and public-good-provision dilemmas. Others were inspired by considerations from evolutionary biology, game theory, and artificial life. Melting Pot aims to cover a maximally diverse set of interdependencies and incentives. It includes the commonly-studied extreme cases of perfectly-competitive (zero-sum) motivations and perfectly-cooperative (shared-reward) motivations, but does not stop with them. As in real-life, a clear majority of scenarios in Melting Pot have mixed incentives. They are neither purely competitive nor purely cooperative and thus demand successful agents be able to navigate the resulting ambiguity. Here we describe Melting Pot 2.0, which revises and expands on Melting Pot. We also introduce support for scenarios with asymmetric roles, and explain how to integrate them into the evaluation protocol. This report also contains: (1) details of all substrates and scenarios; (2) a complete description of all baseline algorithms and results. Our intention is for it to serve as a reference for researchers using Melting Pot 2.0.
translated by 谷歌翻译
Governments, industry, and academia have undertaken efforts to identify and mitigate harms in ML-driven systems, with a particular focus on social and ethical risks of ML components in complex sociotechnical systems. However, existing approaches are largely disjointed, ad-hoc and of unknown effectiveness. Systems safety engineering is a well established discipline with a track record of identifying and managing risks in many complex sociotechnical domains. We adopt the natural hypothesis that tools from this domain could serve to enhance risk analyses of ML in its context of use. To test this hypothesis, we apply a "best of breed" systems safety analysis, Systems Theoretic Process Analysis (STPA), to a specific high-consequence system with an important ML-driven component, namely the Prescription Drug Monitoring Programs (PDMPs) operated by many US States, several of which rely on an ML-derived risk score. We focus in particular on how this analysis can extend to identifying social and ethical risks and developing concrete design-level controls to mitigate them.
translated by 谷歌翻译
本文档描述了Spotify出于学术研究目的发布的葡萄牙语播客数据集。我们概述了如何采样数据,有关集合的一些基本统计数据,以及有关巴西和葡萄牙方言的分发信息的简要信息。
translated by 谷歌翻译
由于控制结构特性关系的分子间相互作用的微妙平衡,预测由分子构建块形成的晶体结构的稳定性是一个高度非平凡的科学问题。一种特别活跃和富有成果的方法涉及对相互作用的化学部分的不同组合进行分类,因为了解不同相互作用的相对能量可以使分子晶体的设计和微调其稳定性。尽管这通常是基于对已知晶体结构中最常见的基序的经验观察进行的,但我们建议采用有监督和无监督的机器学习技术的组合来自动化分子构建块的广泛库。我们介绍了一个针对有机晶体的结合能量预测的结构描述符,并利用以原子为中心的性质来获得对不同化学基团对晶体晶格能量的贡献的数据驱动评估。然后,我们使用结构 - 能量景观的低维表示来解释该库,并讨论可以从本分析中提取的见解的选定示例,从而提供了一个完整的数据库来指导分子材料的设计。
translated by 谷歌翻译
蒙特卡洛树搜索(MCTS)是一种搜索最佳决策的最佳先入点方法。 MCT的成功在很大程度上取决于树木的建造方式,并且选择过程在其中起着基本作用。被证明是可靠的一种特殊选择机制是基于树木(UCT)的上限置信度范围。 UCT试图通过考虑存储在MCT的统计树中的值来平衡探索和剥削。但是,对MCTS UCT的一些调整对于这是必要的。在这项工作中,我们使用进化算法(EAS)以替代UCT公式并在MCT中使用进化的表达式来进化数学表达式。更具体地说,我们通过在MCTS方法(SIEA-MCT)中提出的语义启发的进化算法来发展表达式。这是受遗传编程(GP)语义的启发,其中使用健身案例被视为在GP中采用的要求。健身病例通常用于确定个体的适应性,可用于计算个体的语义相似性(或差异)。但是,MCT中没有健身案例。我们通过使用MCT的多个奖励值来扩展此概念,从而使我们能够确定个人及其语义的适应性。通过这样做,我们展示了SIEA-MCT如何能够成功地发展数学表达式,而数学表达式与UCT相比,无需调整这些演变的表达式而产生更好或竞争的结果。我们比较了提出的SIEA-MCT与MCTS算法,MCTS快速动作值估计算法的性能, *-minimax家族的三种变体,一个随机控制器和另外两种EA方法。我们始终展示SIEA-MCT在挑战性的Carcassonne游戏中如何优于大多数这些智能控制者。
translated by 谷歌翻译
社交机器人已被用来以各种方式来协助心理健康,例如帮助自闭症儿童改善其社交技能和执行功能,例如共同关注和身体意识。他们还用于通过减少孤立和孤独感,并支持青少年和儿童的心理健康来帮助老年人。但是,这一领域的现有工作仅通过社交机器人对人类活动的互动响应来帮助他们学习相关技能,从而通过社交机器人表现出对心理健康的支持。我们假设人类还可以通过与社交机器人释放或分享其心理健康数据来从社交机器人那里获得帮助。在本文中,我们提出了一项人类机器人相互作用(HRI)研究,以评估这一假设。在为期五天的研究中,共有五十五名(n = 55)的参与者与社交机器人分享了他们的内在情绪和压力水平。我们看到大多数积极的结果表明,值得在这个方向上进行未来的工作,以及社会机器人在很大程度上支持心理健康的潜力。
translated by 谷歌翻译
随着深度学习生成模型的最新进展,它在时间序列领域的出色表现并没有花费很长时间。用于与时间序列合作的深度神经网络在很大程度上取决于培训中使用的数据集的广度和一致性。这些类型的特征通常在现实世界中不丰富,在现实世界中,它们通常受到限制,并且通常具有必须保证的隐私限制。因此,一种有效的方法是通过添加噪声或排列并生成新的合成数据来使用\ gls {da}技术增加数据数。它正在系统地审查该领域的当前最新技术,以概述所有可用的算法,并提出对最相关研究的分类法。将评估不同变体的效率;作为过程的重要组成部分,将分析评估性能的不同指标以及有关每个模型的主要问题。这项研究的最终目的是摘要摘要,这些领域的进化和性能会产生更好的结果,以指导该领域的未来研究人员。
translated by 谷歌翻译